1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use std::collections::VecDeque;
use std::io::ErrorKind;
use std::net::SocketAddr;
use std::net::UdpSocket;
use std::sync::Arc;
use std::sync::Mutex;
use std::thread;
use std::time::Duration;
use crossbeam::channel::Receiver;
use crossbeam::channel::TryRecvError;
use crate::acknowledgement::{AcknowledgementCheck, AcknowledgementList};
use crate::config::Config;
use crate::link::needs_ack;
use crate::packet::PType;
use crate::packet::Packet;
use crate::packet::PacketMeta;
pub struct SendThread {
batch_queue: VecDeque<Packet>,
socket: Arc<UdpSocket>,
peer_addr: SocketAddr,
primary_queue: Receiver<Packet>,
stop_flag: Arc<Mutex<bool>>,
is_empty: Arc<Mutex<bool>>,
ack_list: Arc<Mutex<AcknowledgementList>>,
ack_check: Arc<Mutex<AcknowledgementCheck>>,
send_seq: Arc<Mutex<u32>>,
config: Config,
}
impl SendThread {
#[allow(clippy::too_many_arguments)]
pub fn new(
socket: Arc<UdpSocket>,
peer_addr: SocketAddr,
primary_queue: Receiver<Packet>,
stop_flag: Arc<Mutex<bool>>,
ack_check: Arc<Mutex<AcknowledgementCheck>>,
ack_list: Arc<Mutex<AcknowledgementList>>,
send_seq: Arc<Mutex<u32>>,
is_empty: Arc<Mutex<bool>>,
config: Config,
) -> SendThread {
SendThread {
batch_queue: VecDeque::new(),
socket,
peer_addr,
primary_queue,
stop_flag,
ack_check,
ack_list,
send_seq,
is_empty,
config,
}
}
pub fn start(&mut self) {
loop {
let flag_lock = self.stop_flag.lock().expect("Error locking stop flag");
if *flag_lock {
break;
}
drop(flag_lock);
match self.batch_queue.pop_front() {
Some(mut packet) => {
if packet.is_meta {
if packet.meta.delay_ms > 0 {
thread::sleep(Duration::from_millis(packet.meta.delay_ms));
}
if !self.batch_queue.is_empty() {
let retry_count = packet.meta.retry_count + 1;
if retry_count >= self.config.link.max_retries {
let mut flag_lock =
self.stop_flag.lock().expect("Error locking stop flag");
*flag_lock = true;
} else {
let mut meta_packet = Packet::new(PType::Extended, 0);
meta_packet.set_meta(PacketMeta {
retry_count,
delay_ms: self.config.link.retry_delay,
});
self.batch_queue.push_back(meta_packet);
}
}
} else if !self.check_ack(&packet) {
self.add_ack(&mut packet);
self.send(packet);
}
}
None => {
self.fetch_window();
let mut empty_lock = self.is_empty.lock().expect("Unable to lock empty bool");
let mut retry_delay = self.config.link.retry_delay;
if self.batch_queue.is_empty() {
(*empty_lock) = true;
self.batch_queue.push_back(self.ack_packet());
retry_delay = self.config.link.ack_only_time;
} else {
(*empty_lock) = false;
}
drop(empty_lock);
let mut meta_packet = Packet::new(PType::Extended, 0);
meta_packet.set_meta(PacketMeta {
retry_count: -1,
delay_ms: retry_delay,
});
self.batch_queue.push_back(meta_packet);
}
}
}
}
pub fn is_empty(&self) -> bool {
let empty_lock = self.is_empty.lock().expect("Unable to lock empty bool");
*empty_lock
}
pub fn ack_packet(&self) -> Packet {
let seq_lock = self.send_seq.lock().expect("Unable to lock seq");
let seq: u32 = *seq_lock;
Packet::new(PType::AckOnly, seq)
}
pub fn fetch_window(&mut self) {
for _ in 0..self.config.link.window_size {
match self.primary_queue.try_recv() {
Ok(packet) => self.batch_queue.push_back(packet),
Err(TryRecvError::Empty) => break,
Err(TryRecvError::Disconnected) => panic!("Primary queue disconnected"),
}
}
}
pub fn check_ack(&self, packet: &Packet) -> bool {
if needs_ack(packet) {
let ack_lock = self.ack_check.lock().expect("Unable to lock ack list");
(*ack_lock).check(&packet.sequence)
} else {
false
}
}
pub fn add_ack(&self, packet: &mut Packet) {
let ack_lock = self.ack_list.lock().expect("Unable to lock ack list");
let ack = (*ack_lock).get();
packet.add_ack(ack);
}
pub fn send(&mut self, packet: Packet) {
let data = packet.compile();
let result = loop {
match self.socket.send_to(&data, self.peer_addr) {
Ok(size) => {
break size;
}
Err(err) => match err.kind() {
ErrorKind::PermissionDenied => continue,
_ => panic!("Unable to send data: {}", err),
},
}
};
if result == 0 {
panic!("Cannot sent");
}
if needs_ack(&packet) {
self.batch_queue.push_back(packet);
}
}
}